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SCIENTIFIC EXPLORATION O F  SPACE 

I .  

by 
Dr. Har ry  J. Goett 

The s tory I am going to t r y  to tell tonight is a relatively untold one; 

it deals with the events in the life of a satellite that occur af ter  the 

headline "Satellite in Orbit." The main s tory of space projects to date 

seems to focus on advance preparation for the launch and the launch 

itself. Actually a t  this point the project has  just  reached the threshold 

of i t s  useful life. To end the s tory here ,  is equivalent to ending the bi- 

ography of a great  man on the day of his graduation from school. 

Perhaps the reason the par t  of the space story after launch does 

not have striking news value is because it is s o  diffuse. 

manned space flight projects there  i s  no single personality on whom 

the spotlight can be concentrated; the job of putting together the cosmic 

jigsaw puzzle of space f r o m  the bits and pieces of data obtained f rom 

our satell i tes i s  one that engages the efforts of many people throughout 

the scientific community; and this jigsaw puzzle goes together so 

gradually that there  a r e  no singular events which mer i t  a headline. I 

suspect that there  a r e  Nobel prizes in the making, but it i s  going to be 

difficult to determine who should get the medal. 

Except for the 
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Despite these difficulties this portion of the space effort should be 

understood not only by the scientific community but by the general  public 

as well. 

and they deserve to do it on the basis of its real  accomplishments and 

potentialities. 

It is the general public who ultimately will make our space policy, 

I don't pretend to know how this message can be car r ied  to the general 

public. Fo r  this reason I appreciate the opportunity to discuss this mat ter  

with a group of professionals in the a r t  of communications such as you. 

I hope you consider this task a worthy challenge to your profession. 

An example of the point I have been making is furnished by Vanguard 

'I. I am sure  all of you participated in its pre-launch t r ia l s  and tribulations, 

and perhaps contributed your share  of "body english" to get it in orbit. But 

how many realized that this satellite is  not only still up there,  but that it 

is still supplying useful scientific data. 

(Slide #1 - Vanguard) 

A tiny radio t ransmit ter ,  powered by six solar cells which still put out 

about 1/10 of a milliwatt when in sunlight, is operating and enabling us  to 

continue to track Vanguard I accurately. 

We have tracked this satellite for some four years  now. 

(Slide #2 - Perigee Height) 

Here you see the resul t  of our observations in t e rms  of perigee height vs 

t ime af ter  the orbital mathematician has  processed the tracking obser-  

vations which keep coming in a t  the ra te  of about six per  day. 

seem to pose a question rather  than provide an  answer. However, from 

These data 
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i them the solar physicist has  been able to deduce something about radi-  

I ation pressure  from the sun; the upper atmosphere physicist has  been 

able to derive the temperature and composition of the atmosphere at ex- 

t reme altitudes and the influence of the sun on these character is t ics ;  and 

the geologist has  been able to make deductions with respect  to the strength 

of the ear th 's  c rus t  beneath the oceans. 

An insight as to how this was done is  given on the next slide. 

(Slide #3  - Vanguard Orbit  Variation) 

This long period variation shown by the theoretical line has  been explained 

by the solar physicist a s  the effect of a force of the order  of 1/50 of an 

ounce, exerted by the radiation pressure  from the sun on the satellite, to- 

gether with the gravitational traction of the sun and moon. This smaller  

more  rapid variation can be explained by a periodic variation in the earth 's  

gravitational pull. With this shred of information the geodesist takes over, 

and he can reason to a shape of the earth such as shown on this slide. 

(Slide #4 - Harmonies of Geoid) 

You may ask what is the importance of a 50 f t .  variation in a 4,000 

mile radius. It is of considerable interest  to the geologist who is trying 

to understand the characterist ics of the earth 's  surface and its interior.  

From these data he can deduce the bending strength of the earth 's  c rus t  

and its resistance to known distorting forces. One interesting inference 

has  been drawn that this shape was set some 50 million years  ago when 

the day was 23 hours and 30 minutes in length. 

In a somewhat s imilar  manner much useful information has been de- 

rived about the density and temperature of the upper atmosphere from 
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Echo I. 

way ac ross  the sky, is very  large in proportion to i t s  weight. It is there- 

fore most  responsive to small  changes in resistance in orbit and i ts  o r -  

bital variations have served as a very sensitive measure  of the density 

variations it encounters. A most  interesting example of this is i l lustrated 

on the next slide. 

This 80 f t .  balloon, which I am su re  you all have seen picking its 

(Slide #5 - Echo Orbit Variations) 

Shown here  a r e  the orbital period variations versus  time. 

that at this point there was a marked change in the period, which implies a 

change resistance.  This change occurred a t  the same time that a Class  # 3  

solar f lare  was observed from the earth. 

the upper atmosphere physicist was able to deduce that this f lare heated 

up the atmosphere, causing it to expand, and increased in density at the 

altitudes of the Echo I orbit. 

You will note 

From information of this type, 

Extensive correlation with period variation of Echo I and other satel-  

l i tes had led to the conclusion of a marked coupling between the eleven- 

year  solar sun spot cycle, and the temperature of the upper atmosphere. 

This slide shows the correlation over the past  four years  during which 

there  have been satellites in orbit. 

(Slide #6 - Upper Atmosphere Temperature Variations) 

An extrapolation into the future i s  also shown. Needless to say, this antici- 

pated correlation will be watched for years  to come. 

Thus far, I have been talking about the "first generation" of satellites. 

Their They a r e  characterized by an  absolute minimum of instrumentation. 

scientific value has  pr imari ly  been derived by observing their orbital 
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variations from the ground and then correlating these variations with other 

physical phenomena. I would like now to shift to the "Direct Measurement" 

satellites which c a r r y  instruments on board to sample and measure  the 

characterist ics of the environment in which they find themselves. Explorer I 

was of this type, and the geiger tube i t  car r ied  gave f i r s t  direct  evidence 

of the Van Allen belts. Later  satellites car r ied  instruments of considera- 

bly increased complexity. 

Contemplate for a second the problem this poses.  In many cases  

these a r e  most  sensitive instruments of the type which heretofore have 

only been used to conduct precise experiments in the ideal environment of 

the laboratory. Such experiments probably have been conducted in an  air- 

conditioned, shock insulated environment with an  experienced experimenter 

in attendance, carefully adjusting conditions and making his own readings. 

Now we must  take these instruments and operate them a t  great  distances,  

under conditions where they will be subject to extreme variations in the 

temperature  and pressure.  To heap insult on injury, these instruments 

will be placed on top of a rocket before they go into orbit and be exposed 

to shock and vibration conditions much worse than rolling them down the 

stairs. 

Let's take a look a t  what we want to observe from these direct  meas -  

urements  satellites. The a r e a  of sun-earth relationships promises  to be 

one of the most  exciting and fruitful a r e a s  of research ,  and happens to be the 

one on which we have made the most progress  to date. The results p re -  

viously quoted from Vanguard and Echo hint at the interrelation that 

exis ts  between the sun and what goes on in the earth's upper atmosphere,  
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and it is  easy to speculate that this effect eventually influences variations 

in our weather. Our objective is a more detailed, quantitative understand- 

ing of the physical phenomena involved. I predict that some day in  the 

future the understanding of this sun-earth interrelationship will have a 

direct  impact on our daily lives. I am reminded of Far radays  answer to 

a member of English Parl iment  when asked about the earthly use  of his 

new invention the electric motor. You will recal l  that Fa r raday  replied 

"Someday you will tax this." 

lated that our knowledge of sun-earth relationships derived from satellites 

will justify the comment that "These resul ts  will some day influence the 

pr ice  of beans in Kansas.'' 

In a somewhat similar vein it can be specu- 

This slide indicates the various phenomena of in te res t  in  this portion 

of our space research.  

(Slide #7 - Sun-Earth Phenomena) 

These can conveniently be divided into three general a reas :  

The first concerns the sun itself. Previous to the advent of the satel-  

l i te it has  been necessary to study the sun as i f  thru a translucent blind- 

fold, because the ear th 's  atmosphere cuts out a high percentage of the 

sun's radiation which tells u s  what is going on up there. 

tive of our sun-earth study from satellites will be to observe details of 

sun-spots and solar f lares  which a r e  the basic cause of the other phenomena 

of interest .  

as its objective. I will discuss more of this shortly. 

Thus, one objec- 

The Orbiting Solar Observatory, launched recently had this 

The second region of interest  is re fer red  to as interplanetary space. 

It is to be distinguished from the near-earth region in that the phenomena 
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in the interplanetary region a r e  dominated by the sun, and relatively un- 

influenced by the earth.  In this interplanetary region it will be possible 

to observe solar  electromagnetic radiations and particle emissions,  e s -  

sentially uninfluenced by the earth 's  magnetic field. 

The third region is  the near-earth region called the magnetosphere. 

This is a region in which, as  the slide attempts to portray,  the magnetic 

field of the ear th  exer t s  a major  influence. The magnetic field lines of the 

ear th  interact with the electromagnetic radiations from the sun--and divert  

the flow of energetic particles from the sun. Fortunately, this magnetosphere 

ac ts  as a protective shield and prevents a major portion of these radiations 

from impinging on the earth. At the equator, this magnetosphere o r  shield 

extends up some six ear th  radii-24,000 miles;  at the magnetic poles the 

shield is much thinner and solar effects such as the aurora  occur at much 

lower altitudes. 

If I were  to tell  this s tory  by proceeding from that which we know 

most  about to that which we know least, it would go from this near-ear th  

region, to interplanetary space,  to the sun, since our knowledge var ies  in 

d i rec t  relation to the accessibility of these regions. On the other hand, 

the s tory  makes better sense by going from cause to effect, i.e., to s t a r t  

with the sun. 

The satellite from which we are  studying the sun is the OSO. It was 

launched from Cape Canaveral las t  March. 

c i rcu lar  orbi t  about 350 miles  above the earth. This slide shows the 

manner  in which it operates. 

This satellite is  now in a near 

(Slide #8 - Orbiting Solar Observatory) 
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Its main object is to keep the instrumentation mounted in this portion 

here  pointed a t  the sun. 

which makes the satellite operate like a gyroscope and thus maintain a 

fixed orientation in space unless precessed by je ts ,  located here.  

je ts  a r e  activated by sun-sensing instruments mounted on this a rm.  

job i s  to keep the a r m  aimed a t  the sun, equivalent to aiming a rifle a t  a 

2-1/2 foot balloon a t  a distance of one mile. The satellite loses sight of 

the sun each time it goes behind the earth. Since it has  completed over a 

thousand orbits to date (1,071 to be exact) this means it has  reaimed itself 

some thousand plus times. As you can see OS0 is not a very  relaxing 

I 
This par t  of the spacecraft  i s  a spinning wheel, 

These 

Their 

satellite; every morning I have come to work during the l a s t  three months 

since i ts  launch, my  f i r s t  question is--"How i s  O S 0  doing?" 

mains perfect. It has  not missed  the sun yet. 

Its aim r e -  

The value of OS0 of course,  is that i t  looks at the sun from above the 

earth 's  atmosphere.  As this next slide shows i t  therefor "sees" the sun 

in this short  wavelength range which a r e  blanked out from any viewer on 

ear th  by the earth's atmosphere. 

(Slide #9  - Solar Spectrum) 

This range here  shows the solar radiation that reaches the earth-essentially 

the visible and radio wave radiation. 

ultra-violet region over which we a re  observing f rom OSO. Here i s  a 

sample record  of what i s  seen. 

This i s  the gamma ray,  x- ray  and 

(Slide # l o  - Spectrum Lines) 

Here  a r e  spectrum lines which tell much of what i s  going on on the sun; 

f rom a detailed study of these lines it will be possible to deduce the 
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temperature variation in  the atmosphere;  how i t  builds up during a solar 

f lare  and the like. 

To date OS0 has enabled us  to look a t  data from about 20  solar f lares.  

While we have only been able to scan the resulting data, we hope to learn 

more  about the f lare  mechanism and the processes  involved in releasing 

and transmitting energy from the sun during a solar event. 

The next region of study concerns the interplanetary space effects. 

As this slide shows, three satellites have been launched into this area.  

(Slide #11 - Interplanetary Studies) 

Their trajectories a r e  schematically indicated. 

which continued transmitting until i t  was about 20,000,000 miles  out f rom 

the earth. 

had an apogee of some 48,000 miles.  

You recal l  Pioneer V 

Explorer X went out some 145,000 miles  and Explorer XI1 

This next slide shows the spacecraft themselves. 

(Slide #12 - Spacecraft) 

The p r imary  purpose of Explorer X was the measurement of the magnetic 

field. Since it was expected that this field might range down as low as one 

gamma,- 

magnetometer which was mounted on this non-magnetic plastic boom - 
away f rom the magnetic mater ia ls  in the main structure. Explorer XII 

ca r r i ed  a total of ten instruments for sensing various types and energy 

range of particles. 

1 
60,000 of the value in this room, i t  required a very  sensitive 
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Let u s  take a look a t  some of the resul ts  these instruments have 

brought back from space. 

obtained by a magnetometer on Explorer X. 

The next slide shows a piece of the record  

(Slide #13 - Magnetometer results)  

This piece starts a t  a point 10.5 earth radi i  out and extends through the 

following three days of the trajectory out to 38.5  ear th radii. 

Before examining the data I would like to emphasize a point mentioned 

previously. Noted on the bottom of the slide a r e  the worldwide stations 

which recorded each particular segment of data. 

recorded at Johannesburg, South Africa, this at Goldstone, California, 

this at Woomera, Australia, 

mundane but important problems of the space age,  i.e., how to get instru-  

ments and people in a s  many places tuned up and adjusted so  that they 

will obtain data that dovetails a s  nicely a s  this s e t  does. This operation 

must  be correlated within milliseconds, and competently operated by an 

operational crew who cannot possibly be a s  famil iar  with the niceties of 

the resul ts  as is the man who conceived the experiment-who incidentally 

will, i n  due course,  very  cri t ically examine the data. 

we don't always succeed a s  well a s  these resul ts  imply. 

Thus, this section was 

To m e  this represents  one of the more  

It isn ' t  easy,  and 

Now to examine the data itself, Note the drop off here  a s  the space- 

c raf t  gets far ther  and far ther  from the magnetosphere. 

general  level of 20  gammas. 

anticipated for the quiescent state in interplanetary space. 

quite variable in magnitude a s  shown on this record,  and in direction as 

shown on other records not reproduced on this slide. 

It reaches a 

This level i s  considerably higher than that 

It a lso i s  

Both these 
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conditions f i t  in with a "solar  wind hypothesis" advocated by some 

theoreticians who postulate conditions such as a r e  shown on this slide. 

(Slide #14 - Solar Wind Slide) 

They postulate that during quiet periods the sun's magnetic field is like 

this,  in  which case  the field strength in the location of Explorer X would 

have been in the range of one to five gammas. However, there  a r e  intervals 

of a "solar  breeze" or  "wind" shown on the bottom two conditions. In these 

la t ter  two cases ,  the magnetic lines a r e  stretched out from the sun. The 

higher level measured by Explorer X and the somewhat variable conditions 

tend to support this hypotheses. 

Returning to the previous slide. I would like t o  call  your attention to 

this aspect of the data. 

(Slide #15 - Magnetometer Results with Circle) 

At this timq visual observations from the ground indicated that a C l a s s  #3  

solar  f la re  had occurred. We were  most fortunate to have Explorer X 

outside the magnetosphere a t  this time. It enabled u s  to record some 

unique data on the magnetic field and plasma flux associated with this 

f la re .  

Explorer  X noted this marked change in the magnetic field. 

This c i rc le  shows the effect, Twenty-eight hours a f te r  the f la re  

This particular section of the data is reproduced on the next slide. 

(Slide #16 - Magnetic field and plasma flow - Explorer X) 

On this upper curve is again shown the magnetic field, You can see  the 

general  level that the magnetometer was recording pr ior  to the geomag- 

netic storm-then this marked change. Down below a r e  the resul ts  from 

11 



the plasma probe instrument which 

As you can see a t  the same time a s  

a marked increase in the density of 

ship between these two phenomena, 

recorded the particle concentration. 

the magnetic field jumped, there was 

plasma flow, showing the close relation- 

Now obviously, I have only been able to present  a glimpse of the data 

acquired. When the pieces a r e  put together from Pioneer  V,  Explorer X 

and Explorer XII, the tentative picture begins to emerge. I must  hedge my 

subsequent remarks  by saying that this picture is very  tentative and it will 

need much more  data before i t  becomes completely clear.  There st i l l  r e -  

main alternative hypothesis. A s  a matter of fact this states the case rather 

mildly. I have watched most  violent discussions going on relative to these 

alternatives between scientists who a re  supposed to be coolly rational. 

However, with these reservations,  here  i s  a qualitative picture. 

(Slide #17 - Plasma tongue from solar f lare) 

As the picture indicates, when a solar event, which i s  an eruption on 

the surface of the sun occurs,  it sends out a huge tongue of magnetic field 

lines as shown. According to one hypothesis these lines form in effect a 

magnetic bottle. Cosmic rays from outer space a r e  excluded by this bottle 

and bounced off it-and the plasma which erupts from the sun i s  confined 

within the bottle. The plasma, which i s  basically a gas cloud composed of 

low energy charged particles,  in effect creates  a magnetic field which 

moves along with it. Higher energy particles spiral  around and a r e  car r ied  

along by these magnetic field lines. It st i l l  remains unclear and subject 

to debate as to whether the particles s t a r t  out with high energies or  acquire 

mos t  of this energy by being accelerated to high velocities when they a r e  

12 
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pushed along by this magnetic field. In any event by the t ime these 

particles-electrons,  protons, and neutrons-reached Pioneer V ,  Explorer 

X ,  and Explorer XII, there was a spectrum of energy all the way from 

relativistic-i.e., traveling with the speed of light-on down. 

The next slide shows how the solar tongue continues to expand, 

eventually enveloping the magnetosphere. 

(Slide #18 - Elongated tongue from solar f lare) 

It distorts the magnetosphere as shown here-compressing it here ,  stretch- 

ing it out into tear  drop shape on the opposite side. 

deflected by the magnetosphere and few reach the ear th  except a t  the polar 

The particles a r e  

cap. Whether these particles then become the pr imary  source of the 

particle population of the radiation belt, is another subject on which there 

a r e  widely diverse views. 

Needless to say these solar eruptions a r e  of major concern to the 

people planning manned space flight missions and measurements such a s  I 

have been describing a r e  being used to design the protection which a man 

will need from exposure to these particles. It would appear that at  least  

for a lunar t r ip  a man can be adequately protected from all but the most  

extreme events. One objective of our solar studies is to devise a way of 

predicting when a major  event will occur. If this succeeds,  manned space 

shots will be timed to avoid these events, just  as a ship avoids a hurricane 

a r e a  at sea. 

I believe this c lear ly  demonstrates the close relationship between our 

scientific efforts and the manned space program. The distribution of 
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harmful radiations in space, the times of their occurrence,  the influence 

I of magnetic fields a r e  all important problems that space science investi- 

gations must  solve before one can safely proceed to send men out into 

space. 
I 

In re turn,  putting a man into space will further aid u s  in the scientific 

exploration of the universe. 

Next, le t  us  turn attention to the "near-earth" region. As this slide 

shows, a number of satellites have explored this region. 

(Slide #19 - Magnetosphere Satellites) 

You will note these satellites a r e  actually directed at two different regions. 

Explorer VI and Explorer XI1 were concerned with the energetic particle 

population of the great  radiation belts. Explorer VIII, P-21, the recently 

launched Ariel ,  and Ti ros ,  a r e  concerned pr imari ly  with the upper a tmos-  

phere and ionosphere. 

The next slide shows the picture that can be pieced together from the 

combined resul ts  of these satellites. 

(Slide #20 - Diagram of magnetosphere and belts) 

In this instance, the magnetic field that controls the distribution of the 

par t ic les  is that of the earth;  is relatively constant and quantitatively under- 

stood s o  that the path of the captured particles is thus reasonably p re -  

dictable. 

poles,  r eve r se  and wander back to the opposite pole. 

c loses t  to the ear th  at these poles, and some investigators think they have 

an  important heating effect  on the upper atmosphere, which in turn has a 

They ride along these magnetic l ines,  converge at the magnetic 

They come down 
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potential influence on the weather. This i s  the possibility that led m e  to 

speculate ear l ier  on the relationship between the sun and the beans in 

Kansas. 

One can stir up another violent argument over the source of these 

particles. One school of thought thinks they a r e  injected into the 

magnetosphere by the solar f lare  mechanism I have just  described. Others  

claim an important source i s  from neutron decay in  the upper atmosphere;  

cosmic rays from outer space or  high energy particles impinge in the 

upper atmosphere,  and produce charged electrons and protons, which then 

a r e  captured by the magnetic lines in the belt. Before this argument is 

settled we a r e  going to have to know a lot more  about the lifetime of 

particles in the belt. If it i s  equivalent to a slowly leaking bucket, the 

neutron decay mechanism will be sufficient to keep it populated. If the 

bucket gets kicked over and emptied occasionally, for instance, on the 

occasion of the previously discussed distortion of the magnetosphere by 

a solar wind, the more  plentiful source of injection from the sun looks 

likely. 

Satellites since Explorer I from which Van Allen first identified the 

belts,  have given a more  and more  detailed picture of the particle popu- 

lation of this belt. We know the particle population fluctuates, and this 

fluctuation bears  some relation to variable solar conditions. It may be 

necessary  to go through an  eleven-year solar cycle once or  twice, before 

these fluctuations a r e  completely understood. Next slide shows an average 

picture obtained from resul ts  to date. 

(Slide #21 - Belt population) 
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It can be considered one huge belt with the character is t ics  of i ts  

population varying from the inner to the outer edge. 

Information such as shown on this slide will be of considerable im- 

portance in planning future communications and weather satellites. These 

energetic particles not only have a deteriorating effect on a man,  but they 

also cut down the lifetime of solar cells, t ransis tors ,  and other electronic 

components. Thus, in planning application satellites in which long life- 

time is of pr imary  importance, i t  will be desired to put these satellites 

into orbits where they a r e  least  affected by these particles.  

There is still another region of the magnetosphere that has been 

looked at in considerable detail. This slide shows P-21, Explorer VIII, 

and Ariel  which were launched into the ionosphere to determine its 

characterist ics.  

(Slide #22 - P-21, Ariel  and Explorer VIII) 

The ionosphere, a s  you know, is a region extending roughly from some 

40 miles  to several  thousand miles  above the earth,  There is special 

interest  in it because of its effect on radio transmission. It is this 

variable ionized region off which radio waves a r e  bounced to obtain 

long distance transmissions.  

High altitude probes and satellites have paid off a special dividend 

in telling us  something about the composition of the upper atmosphere. 

The next slide shows on the solid l ine  the measured electron density dis- 

tribution with altitude. What had been expected is shown by the dotted 

line. 

(Slide #23 - Upper Altitude Electron Distribution) 
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This was based on the general view that a t  these upper altitudes the main 

constituent was atomic hydrogen. This deviation i s  explainable by the 

existence of a helium layer a t  these altitudes. 

revised view of the composition of the upper atmosphere. 

seen there is a layer of ionized helium at altitudes shown here  and hydrogen 

does not dominate until much higher altitudes a r e  reached. 

This has  resulted in a 

A s  i t  is now 

(Slide #24 - Atmospheric Composition) 

There i s  still  another type of test I would like to discuss,  pr imari ly  

because i t  i s  a means by which we reach out and obtain a sample of the 

sun. This i s  done from our upper altitude sounding rocket,  f ired f rom 

For t  Churchill,  Canada. 

launch of a Sparrobee rocket from up there,  

This slide shows a rather  spectacular view of a 

(Slide #25 - For t  Churchill Launch) 

F o r t  Churchill is the launching site for these tes ts  because it i s  far 

north where the magnetosphere is  the thinnest; it i s  well situated to study 

polar cap and aurora l  events by means of sounding rockets. It a l so  i s  the 

best  place to reach up through the magnetosphere and sample what goes on 

outside this shield. Ever  since the advent of satell i tes,  sounding rocket 

tes ts  of this type have been most useful, because i t  i s  fairly easy to r e -  

cover the payload after i t  has been up and thus recover  the sample for  

detail examination. 

One method to do this i s  the nuclear emulsion technique. All  of you 

who reca l l  the s tory of the discovery of radium by the Curies  a r e  familiar 

with this technique. You recall  how a photographic plate revealed the 

emission from a piece of radium. Nuclear emulsions a r e  just  blocks of 
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the same photo-sensitive emulsion used to coat photographic plates. 

a r e  sent up to altitudes of about 90 miles on rockets such as the one shown 

here.  

them. 

These 

Upon recovery these emulsions a r e  developed to see  what has hit 

A sample of two plates i s  shown on this slide. 

(Slide #26 - Nuclear emulsions) 

The one on the left was launched during quiet conditions, and a s  you can 

see is relatively unexposed. 

the middle of a major auroral  display, which coincided with a Class  # 3  

solar f lare.  

one is the track of a carbon atom, one of the heavier particles detected. 

The character  of the impinging particle can be determined from detailed 

study of this track. 

particles can be determined. The next slide shows the ‘result. 

The one on the right was launched right into 

These tracks you see a r e  t racks of impinging particles. This 

By such a method the relative abundance of these 

(Slide #27 - Relative abundance) 

This depicts a statistical sample of particles which some 30 minutes before 

had been on the sun! I wish we could get samples of the Moon, Venus, and 

Mars  a s  easily. 

U p  to this point all the phenomena that I have been discussing a r e  

concerned with our solar system. 

two experiments which have enabled us  to reach  out and get a hint of what 

I would like to discuss for a moment 

i s  going on in outer space,  outside our solar system. 

The f i r s t  experiment i s  that conducted on Explorer XI,  the gamma ray  

satell i te,  shown here.  

(Slide #28 - Gamma Ray Satellite) 
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This satellite car r ied  in it what was in effect a telescope sensitive to 

gamma rays  and its objective was to determine the ra te  of production of 

these rays  in outer space. Gamma rays as  you know a r e  a high energy 

form of light, and since they c a r r y  no charge they travel in a straight 

line (and a r e  not deflected by magnetic fields, a s  a r e  cosmic rays) .  

The gamma rays detected in this experiment could be produced either 

as a resul t  of the collision of cosmic rays  and g a s  in the galaxy, or  the 

annihilation of matter and anti-matter. 

in connection with the steady state model of the universe,  where matter 

and anti-matter a r e  continuously created and destroyed. 

This latter possibility is important 

This we call  the 

continuous creation model. 

The most  theoretically pleasing form of this concept would have 

mat te r  and anti-matter created a t  equal amounts. 

we can estimate the number of matter and anti-matter annihilation and 

this in turn would resul t  in a gamma ray  counting ra te  for our telescope 

of about 3,000 per  hour. 

Where this is the case,  

The next slide shows what has been observed from Explorer XI. 

(Slide #29 - Gamma Ray Event) 

The slide in effect i s  a map of the celestrial  sphere. 

the observed directions of gamma rays. 

outer space,  only twenty-two of these gamma ray  messengers  from outer 

space have been observed. This rate of 2.4 per hour a s  compared to the 

3,000 per  hour gives strong evidence against this f o r m  of steady state 

theory. 

alone. 

These dots show 

In nine hours of looking into 

This ra te  is about what one would expect f rom cosmic ray sources 
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There has  been another observation of outer space that has  upset an  

existing theory. 

observed from high altitude rockets. The resul ts  have been surprising a s  

shown on this slide. 

Ultra-violet radiations from various s t a r s  have been 

(Slide #30 - Energy Distribution from Star) 

F o r  certain type of young hot s t a r s  i t  was expected that the ultra-violet 

radiations would approximate this upper curve. 

show a much lower level, indicating that the rate  of energy re lease  in these 

s t a r s  is much lower than had previously been hypothesized. This ra te  of 

energy release is an indicator of the process  of development of the s tar .  

The experimental results thus seem to imply that our present  theories of 

stellar evolution or  the life cycle of s t a r s  is incorrect.  

have in effect been sent back to the drawing board. 

pertinent quote that applies to this situation. 

The observed resul ts  

The astrophysicists 

I am reminded of a 

It goes this way: 

"The terr ible  tragedy of science is the horrible murder  of beautiful 

theories by ugly facts." 

One can predict  that with the use of scientific satellites and the accumu- 

lation of experimental facts ,  the murder  ra te  in the field of astrophysics 

is about to r i se .  

the increase  in the birth ra te  that i s  stimulated. 

I t rus t  that this trend will be more  than compensated by 

The final chapter in my s tory i s  TIROS, the weather satellite. Perhaps 

it is not necessary to tell this chapter, because in contrast  to other satel-  

l i t es ,  the s tory of TIROS is pretty well known. 

highlights of our space accomplishments to date, so I would like to talk 

about it, even i f  briefly. 

However, it is one of the 



This next slide is more  indicative of the potentialities of weather 

satellites than any other that I have seen. The slide shows a world cloud 

map made from one day of TIROS passes. 

(Slide #31 - TIROS World Cloud Map) 

You can see the extent to which even this experimental satellite is able to 

provide a global prospective of the weather. 

hurricane and typhoon disturbances picked up in a single day's pass.  

particular cloud analysis spotted Hurricane Es ther  before it was detected by 

any other means,  and served to a le r t  the hurr icane patrol by normal means.  

We hope that by close examination of the convective cells which grew into 

Hurricane Es the r ,  more  can be learned a s  to what conditions cause hur -  

r icanes.  

Weather Bureau Net and a r e  already serving a useful operational purpose. 

We a r e  a l l  looking forward to the more complete cloud coverage which 

will be furnished when TIROS' successor-NIMBUS comes in general  use.  

On i t  you see  the number of 

This 

Cloud analysis such a s  this a r e  distributed over a world-wide 

This final slide shows the temperature patterns determined from the 

TIROS infrared data. 

(Slide # 3 2  - Temperature Pat terns)  

These a r e  lines of constant temperature. 

cloud patterns and probable front lines from data such a s  this since the 

tops of the clouds tend to be cold, the unclouded ear th  o r  ocean, warmer .  

Temperature  variations in  the atmosphere such a s  these a r e  in some way 

related to the dynamics of the weather. It will be interesting in the years  

to come to see  if this relation can be made sufficiently quantitative with 

the help of data such a s  this--and used in predicting the movement of 

main weather patterns.  

It has  been possible to deduce 
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This i s  the end of my  story. I would like to say  in concluding this 

review that i t  represents  the work not only of many men,  but many o r -  

ganizations. The character is t ic  of space science is  such that i t  spreads 

ac ross  many disciplines and a very  broad segment of the scientific f r a t e r -  

nity is helping unravel the meaning of the new scientific data being brought 

back from outer space. 

mechanician, physicist with various a reas  of specialization, as t ronomers ,  

geologist and geodesist in the analysis of the resul ts  I have described. 

You must  recognize the efforts of the orbital 

Each one of these disciplines is finding that it has  a new frontier.  New ' 

a r e a s  of research  a r e  being created by the data which rockets and satellites 

provided. We surely have just  started to realize their  potentialities. 

As  I said in my  introductory remarks ,  it s eems ,  newspaper, magazine, 

radio and television accounts of space projects end with a successful launch 

story. Yet it is precisely a t  this point and beyond that most  of what we call  

space science begins. The pattern of findings of a family of spacecraft  and 

experiments is what gives the individual efforts meaning. 

While I am not in your business, I feel  that you have indeed a most  

challenging opportunity and that is to take the bits and pieces that we a r e  

gaining in the form of scientific information and interpret  this with meaning 

and depth. I think this is the rea l  challenge facing the aviation space wr i t e r s  

"beat" in this country. 

In this endeavor we need your continued support and also your best  

talents.  
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